Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels

نویسندگان

  • Bart M. P. Jansen
  • Dániel Marx
چکیده

We study two fundamental problems related to finding subgraphs: (1) given graphs G and H, Subgraph Test asks if H is isomorphic to a subgraph of G, (2) given graphs G, H, and an integer t, Packing asks if G contains t vertex-disjoint subgraphs isomorphic to H. For every graph class F , let F-Subgraph Test and F-Packing be the special cases of the two problems where H is restricted to be in F . Our goal is to study which classes F make the two problems tractable in one of the following senses: • (randomized) polynomial-time solvable, • admits a polynomial (many-one) kernel (that is, has a polynomial-time preprocessing procedure that creates an equivalent instance whose size is polynomially bounded by the size of the solution), or • admits a polynomial Turing kernel (that is, has an adaptive polynomial-time procedure that reduces the problem to a polynomial number of instances, each of which has size bounded polynomially by the size of the solution). To obtain a more robust setting, we restrict our attention to hereditary classes F . It is known that if every component of every graph in F has at most two vertices, then F-Packing is polynomial-time solvable, and NP-hard otherwise. We identify a simple combinatorial property (every component of every graph in F either has bounded size or is a bipartite graph with one of the sides having bounded size) such that if a hereditary class F has this property, then F-Packing admits a polynomial kernel, and has no polynomial (many-one) kernel otherwise, unless the polynomial hierarchy collapses. Furthermore, if F does not have this property, then F-Packing is either WK[1]-hard, W[1]-hard, or Long Path-hard, giving evidence that it does not admit polynomial Turing kernels either. For F-Subgraph Test, we show that if every graph of a hereditary class F satisfies the property that it is possible to delete a bounded number of vertices such that every remaining component has size at most two, then F-Subgraph Test is solvable in randomized polynomial time and it is NP-hard otherwise. We introduce a combinatorial property called (a, b, c, d)-splittability and show that if every graph in a hereditary class F has this property, then F-Subgraph Test admits a polynomial Turing kernel and it is WK[1]-hard, W[1]hard, or Long Path-hard otherwise. We do not give a complete characterization of the cases when F-Subgraph Test admits polynomial many-one kernels, but show examples that this question is much more fragile than the characterization for Turing kernels. ∗This work was partially supported by the European Research Council through starting grant 306992 “Parameterized Approximation” and grant 280152 “PARAMTIGHT: Parameterized complexity and the search for tight complexity results” and OTKA grant NK105645. †University of Bergen, Norway, [email protected] ‡Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary, [email protected] 1 ar X iv :1 41 0. 08 55 v1 [ cs .D S] 3 O ct 2 01 4

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Sentinel-1 Interferometric SAR Coherence efficiency for Land Cover Mapping

In this study, the capabilities of Interferometric Synthetic Aperture Radar (InSAR) time series data and machine learning have been evaluated for land cover mapping in Iran. In this way, a time series of Sentinel-1 SAR data (including 16 SLC images with approximately 24 days time interval) from 2018 to 2020 were used for a region of Ahvaz County located in Khuzestan province. Using InSAR proces...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Improving Super-resolution Techniques via Employing Blurriness Information of the Image

Super-resolution (SR) is a technique that produces a high resolution (HR) image via employing a number of low resolution (LR) images from the same scene. One of the degradations that attenuates performance of the SR is the blurriness of the input LR images. In many previous works in the SR, the blurriness of the LR images is assumed to be due to the integral effect of the image sensor of the im...

متن کامل

On Out-Trees With Many Leaves

The k-LEAF OUT-BRANCHING problem is to find an out-branching, that is a rooted oriented spanning tree, with at least k leaves in a given digraph. The problem has recently received much attention from the viewpoint of parameterized algorithms. Here, we take a kernelization based approach to the k-LEAF-OUTBRANCHING problem. We give the first polynomial kernel for ROOTED k-LEAF-OUT-BRANCHING, a va...

متن کامل

Hierarchies of Inefficient Kernelizability

The framework of Bodlaender et al. (ICALP 2008) and Fortnow and Santhanam (STOC 2008) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, there are also some issues that are not addressed by this framework, including the existence of Turing kernels such as the “kernelization” of Leaf Out Branching(k) into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015